lunes, 27 de abril de 2009

ENZIMAS 2

1. Introducción

Los enzimas son catalizadores muy potentes y eficaces, químicamente son proteínas Como catalizadores, los enzimas actúan en pequeña cantidad y se recuperan indefinidamente. No llevan a cabo reacciones que sean energéticamente desfavorables, no modifican el sentido de los equilibrios químicos, sino que aceleran su consecución.
Las enzimas son grandes proteínas que aceleran las reacciones químicas. En su estructura globular, se entrelazan y se pliegan una o más cadenas polipeptídicas, que aportan un pequeño grupo de aminoácidos para formar el sitio activo, o lugar donde se adhiere el sustrato, y donde se realiza la reacción. Una enzima y un sustrato no llegan a adherirse si sus formas no encajan con exactitud.

2. Acción De Enzimas

La acción enzimática se caracteriza por la formación de un complejo que representa el estado de transición.
El sustrato se une al enzima a través de numerosas interacciones débiles como son: puentes de hidrógeno, electrostáticas,
hidrófobas, etc, en un lugar específico , el centro activo. Este centro es una pequeña porción del enzima, constituido por una serie de aminoácidos que interaccionan con el sustrato.
Con su acción, regulan la velocidad de muchas reacciones químicas implicadas en este proceso. El nombre de enzima, que fue propuesto en 1867 por el fisiólogo alemán Wilhelm Kühne (1837-1900), deriva de la frase griega en zyme, que significa 'en fermento'. En la actualidad los tipos de enzimas identificados son más de 2.000.

3. Clasificación de las enzimas

1. Óxido-reductasas ( Reacciones de oxido-reduccisn).
2. Transferasas (Transferencia de grupos funcionales)
3. Hidrolasas (Reacciones de hidrólisis)
4. Liasas (Adicisn a los dobles enlaces)
5. Isomerasas (Reacciones de isomerizacisn)
6. Ligasas (Formacisn de enlaces, con aporte de ATP)
1.Oxido-reductasas: Son las enzimas relacionadas con las oxidaciones y las reducciones biológicas que intervienen de modo fundamental en los procesos de respiración y fermentación. Las oxidoreductasas son importantes a nivel de algunas cadenas metabólicas, como la escisión enzimática de la glucosa, fabricando también el ATP, verdadero almacén de energía. Extrayendo dos átomos de hidrógeno, catalizan las oxidaciones de muchas moléculas orgánicas presentes en el protoplasma; los átomos de hidrógeno tomados del sustrato son cedidos a algún captor.
En esta clase se encuentran las siguientes subclases principales: Deshidrogenasas y oxidasas. Son más de un centenar de enzimas en cuyos sistemas actúan como donadores, alcoholes, oxácidos aldehidos, cetonas, aminoácidos, DPNH2, TPNH2, y muchos otros compuestos y, como receptores, las propias coenzimas DPN y TPN, citocromos, O2, etc.
2.Las Transferasas: Estas enzimas catalizan la transferencia de una parte de la molécula (dadora) a otra (aceptora). Su clasificación se basa en la naturaleza química del sustrato atacado y en la del aceptor. También este grupo de enzimas actúan sobre los sustratos mas diversos, transfiriendo grupos metilo, aldehído, glucosilo, amina, sulfató, sulfúrico, etc.
3.Las Hidrolasas: Esta clase de enzimas actúan normalmente sobre las grandes moléculas del protoplasma, como son la de glicógeno, las grasas y las proteínas. La acción catalítica se expresa en la escisión de los enlaces entre átomos de carbono y nitrógeno (C-Ni) o carbono oxigeno (C-O); Simultáneamente se obtiene la hidrólisis (reacción de un compuesto con el agua)de una molécula de agua. El hidrógeno y el oxidrilo resultantes de la hidrólisis se unen respectivamente a las dos moléculas obtenidas por la ruptura de los mencionados enlaces. La clasificación de estas enzimas se realiza en función del tipo de enlace químico sobre el que actúan.
A este grupo pertenecen proteínas muy conocidas: la pepsina, presente en el jugo gástrico, y la tripsina y la quimiotripsina, segregada por el páncreas. Desempeñan un papel esencial en los procesos digestivos, puesto que hidrolizan enlaces pépticos, estéricos y glucosídicos.
4.Las isomerasas: Transforman ciertas sustancias en otras isómeras, es decir, de idéntica formula empírica pero con distinto desarrollo. Son las enzimas que catalizan diversos tipos de isomerización, sea óptica, geométrica, funcional, de posición, etc. Se dividen en varias subclases.
Las racemasas y las epimerasas actúan en la racemización de los aminoácidos y en la epimerización de los azúcares. Las primeras son en realidad pares de enzimas específicas para los dos isómeros y que producen un solo producto común.


Las isomerasas cis – trans modifican la configuración geométrica a nivel de un doble ligadura. Los óxidos – reductasas intramoleculares catalizan la interconversión de aldosas y cetosas, oxidando un grupo CHOH y reduciendo al mismo tiempo al C = O vecino, como en el caso de la triosa fosfato isomerasa, presente en el proceso de la glucólisis; en otros casos cambian de lugar dobles ligaduras, como en la (tabla) isopentenil fosfato isomerasa, indispensable en el cambio biosinético del escualeno y el colesterol. Por fin las transferasas intramoleculares (o mutasas) pueden facilitar el traspaso de grupos acilo, o fosforilo de una parte a otra de la molécula, como la lisolecitina acil mutasa que transforma la 2 – lisolecitina en 3 – lisolecitina, etc. Algunas isomerasa actúan realizando inversiones muy complejas, como transformar compuestos aldehídos en compuestos cetona, o viceversa.
Estas ultimas desarrollan una oxidorreducción dentro de la propia molécula (oxido reductasa intramoleculares)sobre la que actúan, quitando hidrógeno, a algunos grupos y reduciendo otros; actúan ampliamente sobre los aminoácidos, los hidroxácidos, hidratos de carbono y sus derivados.
5.Las Liasas: Estas enzimas escinden (raramente construyen) enlaces entre átomos de carbono, o bien entre carbono y oxigeno, carbono y nitrógeno, y carbono y azufre. Los grupos separados de las moléculas que de sustrato son casi el agua, el anhídrido carbónico, y el amoniaco. Algunas liasa actúan sobre compuestos orgánicos fosforados muy tóxicos, escindiéndolos; otros separan el carbono de numerosos sustratos.
6.Las Ligasas: Es un grupo de enzimas que permite la unión de dos moléculas, lo cual sucede simultáneamente a la degradación del ATP, que, en rigor, libera la energía necesaria para llevar a cabo la unión de las primeras. Se trata de un grupo de enzimas muy importantes y recién conocidas, pues antes se pensaba que este efecto se llevaba a cabo por la acción conjunta de dos enzimas, una fosfocinasa, para fosforilar a una sustancia A (A + ATP A - ℗ + ADP) y una transferasa que pasaría y uniría esa sustancia A, con otra, B (A -℗ + B A – B + Pi ). A este grupo pertenecen enzimas de gran relevancia reciente, como las aminoácido –ARNt ligasas conocidas habitualmente con el nombre de sintetasas de aminoácidos –ARNt o enzimas activadoras de aminoácidos que representan el primer paso en el proceso biosintético de las proteínas, y que forman uniones C-O; las ácido-tiol ligasas, un ejemplo típico de las cuales es la acetil coenzima. A sintetasa, que forma acetil coenzima. A partir de ácido acético y coenzima A ; las ligasas ácido – amoniaco (glutamina sintetasa), y las ligasas ácido-aminoácido o sintetasas de péptidos, algunos de cuyos ejemplos más conocidos son la glutación sintetasa, la carnosina sintetasa, etc.

4. Importancia del ATP (Trifosfato de adenosina)

Es importante ya que es la principal fuente de energía de los seres vivos y se alimenta de casi todas las actividades celulares, entre ellas el movimiento muscular, la síntesis de proteínas, la división celular y la transmisión de señales nerviosas.
Esta molécula se encuentra en todos los seres vivos y constituye la fuente principal de energía utilizable por las células para realizar sus actividades. Se origina por el metabolismo de los alimentos en unos orgánulos especiales de la célula llamados mitocondrias.

Composición Del ATP
El ATP se comporta como una coenzima, ya que su función de intercambio de energía y la función catalítica (trabajo de estimulación) de las enzimas están íntimamente relacionadas.
La parte adenosina de la molécula está constituida por adenina, un compuesto que contiene nitrógeno (también uno de los componentes principales de los genes) y ribosa, un azúcar de cinco carbonos. Cada unidad de los tres fosfatos (trifosfato) que tiene la molécula, está formada por un átomo de fósforo y cuatro de oxígeno y el conjunto está unido a la ribosa a través de uno de estos últimos.
Los dos puentes entre los grupos fosfato son uniones de alta energía, es decir, son relativamente débiles y cuando las enzimas los rompen ceden su energía con facilidad. Con la liberación del grupo fosfato del final se obtiene siete kilocalorías (o calorías en el lenguaje común) de energía disponible para el trabajo y la molécula de ATP se convierte en ADP (difosfato de adenosina).
La mayoría de las reacciones celulares que consumen energía están potenciadas por la conversión de ATP a ADP, incluso la transmisión de las señales nerviosas, el movimiento de los músculos, la síntesis de proteínas y la división de la célula.
Por lo general, el ADP recupera con rapidez la tercera unidad de fosfato a través de la reacción del citocromo, una proteína que se sintetiza utilizando la energía aportada por los alimentos. En las células del músculo y del cerebro de los vertebrados, el exceso de ATP puede unirse a la creatina, proporcionando un depósito de energía de reserva.

5. Funciones de las enzimas

En su estructura globular, se entrelazan y se pliegan una o más cadenas polipeptídicas, que aportan un pequeño grupo de aminoácidos para formar el sitio activo, o lugar donde se adhiere el sustrato, y donde se realiza la reacción.
Una enzima y un sustrato no llegan a adherirse si sus formas no encajan con exactitud. Este hecho asegura que la enzima no participa en reacciones equivocadas.
La enzima misma no se ve afectada por la reacción. Cuando los productos se liberan, la enzima vuelve a unirse con un nuevo sustrato.

ENZIMAS

El concepto de Sistema

Como definición de sistema se puede decir que es un conjunto de elementos con relaciones de interacción e interdependencia que le confieren entidad propia al formar un todo unificado.

Un sistema puede ser cualquier objeto, cualquier cantidad de materia, cualquier región del espacio, etc., seleccionado para estudiarlo y aislarlo (mentalmente) de todo lo demás. Así todo lo que lo rodea es entonces el entorno o el medio donde se encuentra el sistema.[1]

El sistema y su entorno forman el universo, como se muestra en la figura (1)

Figure 1: Sistema, medio, frontera y universo

La envoltura imaginaria que encierra un sistema y lo separa de sus inmediaciones (entorno) se llama frontera del sistema y puede pensarse que tiene propiedades especiales que sirven para: a) aislar el sistema de su entorno o para b) permitir la interacción de un modo específico entre el sistema y su ambiente. Es muy importante definir la frontera del sistema como una superficie y no otro sistema, debe quedar claro que el espesor de una superficie es matemáticamente cero por lo que la frontera no puede contener materia u ocupar algún lugar en el espacio. El valor de una propiedad que es medida en el punto exacto de la frontera debe ser por tanto el valor del sistema así como del entorno, ya que después de todo el sistema y el entorno están en contacto en ese punto.

Los sistemas termodinámicos se pueden clasificar como: aislados, cerrados y abiertos

El sistema aislado es el sistema que no puede intercambiar materia ni energía con su entorno y este es un modelo imaginario cuya frontera o límite del sistema impide cualquier tipo de intercambio como se muestra en la figura (2)

Figure 2: Sistema aislado

El sistema cerrado es el sistema que sólo puede intercambiar energía con su entorno, pero no materia, es decir, aquel cuya frontera admite únicamente el intercambio de energía como se muestra en la figura (3).

Figure 3: Sistema cerrado

En la figura (4) se muestra lo que se denomina sistema abierto que es el sistema que puede intercambiar materia y energía con su entorno.

Al trabajar con dispositivos tales como motores es a menudo útil definir el sistema dentro de un volumen identificable ya sea fijo o deformable donde se presentan tanto flujo de entrada como flujo de salida. Esto se llama un volumen de control como se muestra en la figura (5)

Figure 5: Volumen de Control y Superficie de Control

Un sistema termodinámico es un sistema macroscópico, es decir, un sistema cuyo detalle de sus características microscópicas (comprendida la posición y la velocidad de las partículas en cada instante) es inaccesible y donde sólo son accesibles sus características estadísticas.

leyes de la termodinamica

Primera ley de la termodinámica
Artículo principal: Primera ley de la termodinámica

También conocido como principio de conservación de la energía para la termodinámica, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Antoine Lavoisier.

La ecuación general de la conservación de la energía es la siguiente:
Eentra − Esale = ΔEsistema

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:
\ Q = \Delta U + \ W

Segunda ley de la termodinámica
Artículo principal: Segunda ley de la termodinámica

Esta ley regula la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrase en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, La Segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía tal que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.

Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos a temperatura más alta a aquellos de temperatura más baja.

Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius
Diagrama del ciclo de Carnot en función de la presión y el volumen.
Diagrama del ciclo de Carnot en función de la presión y el volumen.

En palabras de Sears es: " No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".

Enunciado de Kelvin

No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente y lo convierta íntegramente en trabajo.

Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo siempre será menor a la unidad y ésta estará más próxima a la unidad cuanto mayor sea el rendimiento energético de la misma. Es decir, mientras mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

Tercera ley de la termodinámica
Artículo principal: Tercera ley de la termodinámica

La Tercera de las leyes de la termodinámica, propuesto por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.

Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.

Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por la ciencia.

Ley cero de la termodinámica

El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, entre otras) no son dependientes del tiempo. A dichas variables empíricas (experimentales) de un sistema se les conoce como coordenadas termodinámicas del sistema.

A este principio se le llama del equilibrio termodinámico. Si dos sistemas A y B están en equilibrio termodinámico, y B está en equilibrio termodinámico con un tercer sistema C, entonces A y C están a su vez en equilibrio termodinámico. Este principio es fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición 0.

Reacción exergónica

De Wikipedia, la enciclopedia libre

Una reacción Exergónica es una reacción química donde la variación de la energía libre de Gibbs es negativa.[1] Esto nos indica la dirección que la reacción seguirá. A temperatura y presión, constantes una reacción exergónica se define con la condición:

nop

Que describe una reacción química que libera energía en forma de calor, luz, etc. Las reacciones exergónicas son una forma de procesos exergonicos en general o procesos espontáneos y son lo contrario de las reacciones endergónicas. Se dijo que las reacciones exergónicas trancurren espontáneamente pero esto no significa que la reacción transcurrirá sin ninguna limitación. Por ejemplo la reacción entre hidrógeno y oxigeno es muy lenta y no se observa en ausencia de un catalizador adecuado.

REACCIONES ENDERGONICAS

Las reacciones endergónicas se manifiestan durante los procesos anabólicos; de manera que, requieren que se le añada energía a los reactivos (sustratos o combustibles metabólicos), i.e., se le suma energía (contiene más energía libre que los reactivos).
Por otro lado, durante las recciones exergónicas se libera energía como resultado de los procesos químicos (e.g., el catabolismo de macromoléculas). La energía libre se encuentra en un estado organizado, disponible para trabajo biológico útil.
Las reacciones endergónicas se llevan a cabo con la energía liberada por las reacciones exergónicas.
Las reacciones exergónicas pueden estar acopladas con reacciones endergónicas. Reacciones de oxidacion-reduccion (redox) son ejemplos de reacciones exergónicas y endergónicas acopladas.

REACCIONES ACOPLADAS


Dos reacciones consecutivas, en las que un producto de la primera es sustrato de la segunda se encuentran acopladas mediante un intermediario común

A + B ---------------> C + D
D + E ---------------> F + G

En los seres vivos, el intermediario común es la única posibilidad de transferir la energía metabólica de una reación a otra.


Hay reacciones acopladas en las que el ATP es el intermediario común.

A-Pi + ADP ---------------> ATP + A
ATP + B ----------------> ADP + B-Pi


En reacciones acopladas de este tipo, la finalidad es fosforilar un
intermediario para energizarlo y que pueda intervenir en el metabolismo.

1) Transferencia del fosfato al ADP.

1,3-bis-fosfoglicerato + ADP ------------------------------> ATP + 3-fosfoglicerato
fosfoglicerato quinasa

fosfoenolpiruvato + ADP ------------------------------> ATP + piruvato
piruvato quinasa

2) Transferencia del fosfato del ATP al aceptor.

ATP + Glucosa -------------------------------> ADP + Glucosa-6-fosfato
hexoquinasa / glucoquinasa


Hay reacciones acopladas en las que el intermediario común no es el ATP
sino un compuesto frosforilado

A + ATP ---------------> A-Pi + ADP

A-Pi + B --------------------> A-B + Pi


La finalidad de estas reacciones es hacer posible que tenga lugar una
reacción termodinámicamente desfavorable, acoplando otra que sí lo es.

Ejemplo:

Ácido glutámico + NH3 --------------------> Glutamina
wpe2.jpg (728 bytes)G0' = +3.4 kcal/mol

Si la reacción de aminación se acopla a otra que produzca un intermediario común fosforilado, la reacción sí será posible

Ácido glutámico + ATP ---------------> Fosfato de glutaminilo + ADP
Fosfato de glutaminilo + NH3 --------------------------> Glutamina + Pi

La reacción sumaria será entonces:
Ácido glutámico + ATP + NH3 ---------------> Glutamina + ADP + Pi
wpe2.jpg (728 bytes)G0' = - 3.9 kcal/mol

DESNATURALIZACION

DESNATURALIZACIÓN DE LAS PROTEÍNAS

Cuando la proteína no ha sufrido ningún cambio en su interacción con el disolvente, se dice que presenta una estructura nativa (Figura inferior). Se llama desnaturalización de las proteínas a la pérdida de las estructuras de orden superior (secundaria, terciaria y cuaternaria), quedando la cadena polipeptídica reducida a un polímero estadístico sin ninguna estructura tridimensional fija.

Estado nativo
Estado desnaturalizado

Cualquier factor que modifique la interacción de la proteína con el disolvente disminuirá su estabilidad en disolución y provocará la precipitación. Así, la desaparición total o parcial de la envoltura acuosa, la neutralización de las cargas eléctricas de tipo repulsivo o la ruptura de los puentes de hidrógeno facilitará la agregación intermolecular y provocará la precipitación. La precipitación suele ser consecuencia del fenómeno llamado desnaturalización y se dice entonces que la proteína se encuentra desnaturalizada (Figura superior).

En una proteína cualquiera, la estructura nativa y la desnaturalizada tan sólo tienen en común la estructura primaria, es decir, la secuencia de AA que la componen. Los demás niveles de organización estructural desaparecen en la estructura desnaturalizada.

La desnaturalización provoca diversos efectos en la proteína:

  1. cambios en las propiedades hidrodinámicas de la proteína: aumenta la viscosidad y disminuye el coeficiente de difusión
  2. una drástica disminución de su solubilidad, ya que los residuos hidrofóbicos del interior aparecen en la superficie
  3. pérdida de las propiedades biológicas

Una proteína desnaturalizada cuenta únicamente con su estructura primaria. Por este motivo, en muchos casos, la desnaturalización es reversible ya que es la estructura primaria la que contiene la información necesaria y suficiente para adoptar niveles superiores de estructuración. El proceso mediante el cual la proteína desnaturalizada recupera su estructura nativa se llama renaturalización. Esta propiedad es de gran utilidad durante los procesos de aislamiento y purificación de proteínas, ya que no todas la proteínas reaccionan de igual forma ante un cambio en el medio donde se encuentra disuelta. En algunos casos, la desnaturalización conduce a la pérdida total de la solubilidad, con lo que la proteína precipita. La formación de agregados fuertemente hidrofóbicos impide su renaturalización, y hacen que el proceso sea irreversible.

Los agentes que provocan la desnaturalización de una proteína se llaman agentes desnaturalizantes. Se distinguen agentes físicos (calor) y químicos (detergentes, disolventes orgánicos, pH, fuerza iónica). Como en algunos casos el fenómeno de la desnaturalización es reversible, es posible precipitar proteínas de manera selectiva mediante cambios en:

INMUNOGLOBULINAS

ESTRUCTURA DE LAS INMUNOGLOBULINAS

Las inmunoglobulinas son glicoproteínas que, según ya indicó Porter en 1959, están formadas por cadenas polipeptídicas agru­padas, dependiendo del tipo de inmunoglobulina, en una o varias unidades estructurales básicas.

Unidad estructural básica

Cada unidad está compuesta por cuatro cadenas polipeptídicas unidas entre sí por puentes disulfuro y otras uniones de tipo no covalente (Figura 3.). Para su estudio se han empleado diferentes procedimientos. Por ejemplo, tras la rotura de los puentes disulfuro por sustancias de carácter reductor, como el mercaptoetanol, se individualizan las cuatro cadenas polipep­tídicas y éstos atendiendo a su tamaño, son de dos tipos: de bajo peso molecular (aproximadadamente 22 KD) y de alto peso molecular (50-70 KD, dependiendo del tipo de Ig). Los polipéptidos de bajo peso molecular reciben el nombre de cadenas ligeras o cadenas L (Light) y las de alto peso molecular, cadenas pesadas o cadenas H (Heavy) (Tabla 3.2).

Dos cadenas ligeras y dos cadenas pesadas se agrupan de tal manera que existe una proximidad espacial entre los cuatro extremos amínicos de las cadenas ligeras y pesadas por una parte, y entre los dos extremos carboxílicos de las cadenas pesadas por otra.

Esta estructura básica de las inmunoglobulinas puede ser fraccionada mediante la utilización de enzimas (papaína, pepsina, etc.), como fue efectuado por Porter en 1959, obteniéndose diferentes tipos de fragmentos (Figura 3 ). El tratamiento con papaína produce la ruptura específica de las cadenas H, en el espacio comprendido entre el puente disulfuro que las une entre sí y los que las unen a las cadenas ligeras. Se obtienen tres fragmentos: uno denomina­do Fc, que determina la actividad biológica, contiene el alotipo y determina la clase y subclase de cadena pesada y dos denominados cada uno de ellos Fab, que contienen el idiotipo y es por donde la molécula se une al antígeno.

Cadenas Ligeras.

Hay dos tipos de cadenas ligeras, estructuralmente diferentes, que se conocen como cadenas ligeras tipo kappa (k) y cadenas ligeras tipo lambda (l). La familia de genes que codifica para la cadena ligera k se localiza en el cromosoma 2 y los loci de los genes homólogos que codifican para la cadena l, en el cromosoma 22. En cada molécula de inmunoglobulina las dos cadenas ligeras son del mismo tipo, k o bien l, pero nunca existe una de cada tipo en la misma inmunoglobulina.

Las cadenas ligeras están formadas por unos 200 aminoácidos con la particularidad de que existen dos puentes disulfuro que unen grupos de unos cincuenta aminoácidos. Concretamente la IgG1 posee 214 aminoácidos y su estructura secundaria y terciaria están determinadas por dos puentes disulfuro intracatenarios que unen los aminoácidos 23 con el 88 y 134 con el 193, (Figura 3.) . A su vez, estas cadenas ligeras tienen otro puente disulfuro intercatenario, por el cual cada una de ellas se une a una cadena pesada para constituir la unidad básica de las inmunoglobulinas. Este puente se encuentra en el último aminoácido (214) de la parte carboxílica para el tipo k y en el penúltimo para el tipo l.

Cadenas pesadas.

Estas cadenas poseen unos cuatrocientos aminoácidos estableciéndose entre algunos de ellos puentes disulfuro (intracatenarios) que asocian unos 60 aminoácidos y que condicionan la estructura secundaria del polipéptido. Por ejemplo, las cadenas pesadas de la IgG1 poseen 440 aminoácidos y los puentes disulfuro unen el aminoácido 22 con el 96, el 144 con el 200, el 261 con el 321 y el 367 con el 425.

Estas dos cadenas pesadas están unidas la una a la otra por puentes disulfuro intercatenarios, ya indicados anteriormente, y que pueden ser de uno a cinco dependiendo del tipo de inmunoglobulina.

En estas cadenas pesadas, y a nivel de los puentes disulfuro intercatenarios, hay una zona de unos 15 aminoácidos, de gran flexibilidad debido a su estructura y constituye lo que se denomina zona bisagra por donde se deforma la molécula de inmunoglobulina cuando se produce la unión con el antígeno, facilitándose así su acoplamiento con éste. Los loci de los genes que codifican para la cadena pesada se localizan en el brazo largo del cromosoma 14.

Parte variable y constante de las cadenas ligeras y pesadas.

Estructuralmente, las cadenas ligeras poseen dos partes: una corresponde al extremo carboxílico que diferencia las cadenas ligeras en dos tipos k y l, y constituye la parte constante de las cadenas ligeras (CL). La otra corresponde al extremo amínico, que es muy variable y constituye la parte variable de las cadenas ligeras (VL) y corresponde a la zona de interacción con el antígeno. Las partes constante y variable son prácticamente de igual tamaño en las cadenas ligeras.

También las cadenas pesadas poseen una parte variable y otra constante. Aproximadamente el tercio del extremo amínico de estas cadenas se caracteriza por ser estructuralmente muy variable, por lo que se conoce como parte variable de las cadenas pesadas (VH). La estructura de este fragmento, al igual que en las cadenas ligeras, depende del tipo de antígeno que reconoce, dado que este extremo también participa en la unión de la inmunoglobulina con el antígeno. Por el contrario, aproxima­damente los dos tercios del extremo carboxílico de todas las cadenas pesadas de un mismo tipo de inmunoglobulinas poseen una estructura idéntica. De ahí que esta parte de las cadenas pesadas se conozca como parte constante de las cadenas pesadas (CH).

Esta parte constante es diferente según la clase de inmunoglobulina que consideremos, determinando la existencia de cinco tipos de cadenas pesadas: g, a, m, d y e que definen a su vez las cinco clases de inmunoglobulinas: IgG, IgA, IgM, IgD e IgE respectivamente. (Figura 3. ).

Características de los distintos tipos de inmunoglobulinas

Debido a esta distinta estructura, las cadenas pesadas van a presentar distintas pro­pie­­dades biológicas, tales como la capa­cidad de unirse entre sí, fijar complemento, fijar la pieza de secreción y unirse a macrófagos, neutrófilos y células NK. En la tabla 3.1 se recogen las principales tipos de inmunoglobulinas y en la tabla 3.3 las principales propiedades de las mismas. Hemos de considerar que incluso entre moléculas de una misma clase existen, según a la subclase a la que pertenezcan, ciertas diferencias cómo se observa en la Tabla 3.4.

Isotipos

Si inmunizamos un animal de una especie con inmunoglobulinas procedentes de una especie distinta, la mayoría de los anticuerpos generados (antisuero heterólogo) irán dirigidos contra la región constante de la inmunoglobulina que hayamos inyectado, permitiendo definir lo que llamamos el isotipo de una inmunoglobulina determinada. Los genes que codifican para las distintas variantes isotipicas están presentes en todos los individuos sanos, es decir, todos los individuos sanos poseen los genes g1, g2, g3, g4, m, a1, a2, d, e, k y l; que codifican respectivamente para las regiones constantes G1, G2, G3, G4, M, A1, A2, D y E de las cadenas pesadas y para las regiones kappa y lambda de las cadenas ligeras. Existen cinco isotipos de cadena pesada (M, G, A, D y E) y dos de cadena ligera (k y l). Así diremos que el isotipo de una determinada inmunoglobulina es G1 o que esa inmunoglobulina es de la clase G y subclase 1, que a su vez puede tener unas cadenas ligeras del isotipo kappa o lambda.

Dominios moleculares en las cadenas ligeras y pesadas.

Tanto las cadenas pesadas como las ligeras poseen grupos de aminoácidos unidos por puentes disulfuro intracatenarios. Estos segmentos repetidos en las cadenas L y H se conocen como dominios. Los dominios de la parte constante de las cadenas pesadas presentan una gran homología secuencial no sólo entre ellos, sino también con la región constante de la cadena L. De forma similar, los únicos segmentos variables en las cadenas L y H presentan cierta homología entre ellos y en menor grado a los de la región constante.

La cadena L tiene dos dominios, uno corresponde a la región variable (VL) y otro a la constante (CL). La cadena H tiene un dominio en la región variable (VH) y tres o cuatro en la constante dependiendo de la clase de inmunoglobulina que consideremos (tres en la IgG, IgA e IgD y cuatro en las IgM e IgE). Estos dominios de la región C se denominan CH1, CH2, CH3 y CH4 cuando aparece este último (Figura 3. ).

Los dominios V son los responsables de la unión con el antígeno y los dominios C, con excepción del CH1, constituyen el fragmento Fc que, como ya se ha indicado, determina las propiedades biológicas de las inmunoglobulinas. Concretamente es por el dominio CH2 por donde se produce la unión a las proteínas del complemento y se establece el enlace con la cadena glicosilada que completa la molécula glicoproteica de las inmunoglobulinas. Es entre los dominios CH1 y CH2 donde se establece la zona bisagra..

Regiones hipervariables

Las zonas variables, tanto de la cadena L como H, poseen a su vez unas regiones en donde se concentra fundamentalmente la variabilidad. Son tres pequeños segmentos que constituyen las denominadas regiones o segmentos hipervariables o región determinante de complementariedad CDR (Complementarity Determining Region), pues determinan la forma del centro activo que permite el reconocimiento y unión al antígeno. Cada una de estas regiones hipervariables se componen de 17 a 20 aminoácidos y cambios en muy pocos aminoácidos de estas zonas suponen una enorme diversidad de posibilidades de unión al antígeno sin variar el resto de la molécula (Figura 3. ). El resto de la parte variable es relativamente constante, de modo que sustituciones en los residuos que la constituyen, no afectan la especificidad de combinación; constituye un “sostén de trabajo” pues su misión es presentar adecuadamente en el espacio las regiones hipervariables al antígeno, por lo que los residuos que componen esta zona se denominan residuos FW (Framework).

Moléculas adicionales a la unidad estructural básica.

En las inmunoglobulinas aparecen, además de las cuatro cadenas polipeptídicas básicas, un componente glucídico (que representa el 2-14 % del peso total de la molécula) y en algunas clases de inmunoglobulinas, glicoproteínas adicionales conocidas como cadena J y pieza de secreción (Figura 3. ).

La cadena J es una glicoproteína con un 12 % de azúcares y un peso molecular de 15 kD que une, mediante puentes disulfuro, extremos Fc en la IgA e IgM. La pieza de secreción es una glicoproteína de 58 kD de peso molecular que sintetizan las células epiteliales de las mucosas y glándulas exocrinas.

Estructura espacial de las inmunoglobulinas.

Una vez conocida la secuencia primaria de aminoácidos en las cadenas peptídicas de las inmunoglobulinas, la deducción de su estructura espacial permitió entender la forma en que millones de diferentes sitios de unión al antígeno son construidos sobre una estructura común.

Las inmunoglobulinas pueden estar constituidas por unidades básicas simples, como es el caso de la IgG, IgD e IgE; en forma de dímeros (dos unidades básicas unidas), como es el caso de la IgA, o incluso por hasta cinco estructuras básicas unidas por sus extremos Fc como es el caso de la IgM. Esto se debe a la cualidad que tienen las cadenas m y a de unirse entre sí. Esta unión se realiza a través de la cadena J y mediante puentes disulfuro (Figura 3.).

Las cadenas pesadas y ligeras están plegadas sobre si mismo, tal como se ha visto mediante análisis cristalográfico (Figura 3.).

Cada uno de los dominios de las cadenas está constituido a modo de “cilindros” en los que se encuentran plegados en forma de sandwich dos grupos de cadenas proteicas, una con tres cadenas polipeptídicas y la otra con cuatro, que presentan estructuras secundarias es de hoja plegada b. Estas dos capas proteicas están alineadas paralelamente rodeando un espacio interior en el que predomina la presencia de aminoácidos hidrófobos (Figura 3) . La unión de esas dos capas se efectúa por puentes disulfuro. En las zonas constantes, las capas de cuatro segmentos están en el exterior de la molécula y las de tres en el interior, mientras que en las variables es al contrario; por lo demás, el modelo global de plegado guarda gran semejanza entre los dominios variables y constantes. Sin embargo, las regiones hipervariables constituyen tres bucles adicionales que no se someten al plegamiento del resto del dominio.

Subclases de Inmunoglobulinas.

Se sabe que no todas las Inmunoglobulinas de una misma clase tienen idéntica estructura, sino que dentro de las clases se pueden establecer subclases considerando la secuencia de aminoácidos de la región constante de las cadenas H y el diferente número y situación de los puentes disulfuro intercatenarios establecidos entre las cadenas pesadas. Así, la IgG humana se divide en cuatro subclases (IgG1, IgG2, IgG3 e IgG4) y la IgA e IgM en dos (IgA1 e IgA2; IgM1 e IgM2) respectivamente. En la tabla 3.4 se exponen las distintas propiedades biológicas de las subclases de inmunoglobulinas G.

Las regiones constantes de las cadenas pesadas de estas diferentes clases y subclases de inmunoglobulinas se conocen, como veremos en el apartado siguiente, con el nombre de variantes isotípicas y son las mismas en todos los individuos normales de la misma especie.

Alotipos

Las inmunoglobulinas, como proteínas que son, pueden actuar como antígenos. Esta propiedad se ha aprovechado para generar anticuerpos contra ellas, que posteriormente han sido utilizados como instrumentos para analizar su estructura y función. Mediante el uso de los anticuerpos generados contra las inmunoglobulinas se ha podido detectar la existencia de variaciones en las mismas.

Si inmunizamos un animal con inmunoglobulinas de otro animal de la misma especie (Figura 3.) obtendremos antisueros homólogos. Estos antisueros homólogos pueden ir dirigidos contra las regiones constantes de las inmunoglobulinas, solo contra aquellas zonas que sean distintas entre ambos animales. Estas diferencias reflejan variaciones mínimas, a veces de un solo aminoácido debidas a diferencias en la secuencia de ADN de los genes que codifican para las inmunoglobulinas. Los genes que codifican para las inmunoglobulinas se heredan en forma de alelos mendelianos, por lo que a cada uno de este tipo de variante se le denomina variante alélica y al conjunto de variantes alélicas, se le denomina alotipo. Los determinantes alotípicos o simplemente alotipos, se sitúan como hemos dicho en la región constante de las cadenas pesadas y ligeras. En el hombre se han descrito tres tipos de alotipos:

· Gm en las cadenas g de las IgG.

· Am en las cadenas a de las IgA.

Km en las cadenas ligeras k que dan lugar a tres alotipos: Km (1’2), Km (1) y Km (3), cuyas diferencias estructurales se recogen en la tabla 3.5.

Idiotipos

Los antisueros homólogos que referíamos anteriormente que se producen al inmunizar animales con inmunoglobulinas de otro animal de la misma especie, también pueden ir dirigidos contra las regiones hipervariables de las cadenas H y/o L de las inmunoglobulinas. Todas las inmunoglobulinas que poseen los mismos determinantes antigénicos en sus regiones hipervariables se dice que pertenecen al mismo idiotipo, o que poseen los mismos determinantes idiotipicos. Los determinantes idiotípicos son exclusivos para las moléculas producidas por un clon determinado de células productoras de anticuerpos. Todos los animales tienen una representación de todas las regiones hipervariables posibles, generadas por recombinación genética (como veremos en el capitulo 5). Estas en condiciones normales, no dan lugar a una masiva producción de anticuerpos al encontrarse cada una en cantidades muy pequeñas, cuando experimentalmente inyectamos una cantidad suficiente de inmunoglobulinas de una especificidad determinada, se desarrollara una respuesta de anticuerpos contra el idiotipo de esa inmunoglobulina en particular (Figura 3.). Los idiotipos parecen tener importancia fisiológica en la regulación del sistema inmune. Según la teoría de la red de Jerne, frente a los idiotipos se formarían anticuerpos que al unirse a los mismos formarían un entramado (“red”) de anticuerpos unidos a otros anticuerpos que tendrían como acción final la regulación del proceso de síntesis de nuevas inmunoglobulinas. Como decíamos anteriormente, cada uno de los idiotipos se encuentra representado en tan pequeña cantidad que pasa desapercibido para el sistema inmune, sin embargo, cuando un determinado clon de células B reconoce su antígeno especifico, prolifera, se diferencia a célula plasmática y produce una gran cantidad de inmunoglobulinas de una misma especificidad, sus determinantes idiotipicos pasaran a encontrarse en mucha mayor cantidad y ahora sí darán lugar a una respuesta de anticuerpos contra ellos, anticuerpos anti-idiotipo, que podrán unirse a las inmunoglobulinas que ocasionaron su generación. La unión de los anticuerpos anti-idiotipo al idiotipo que los origino podrá dar lugar al bloqueo de las inmunoglobulinas solubles que compartan ese idiotipo o unirse a las inmunoglobulinas de membrana presentes en linfocitos B de la misma especificidad, o incluso a las regiones hipervariables del receptor para el antígeno de la célula T que reconocen ese mismo antígeno, con efectos en cada uno de los casos inhibidores o estimuladores. Los idiotipos se encontraron mediante estudios serológicos, al observarse que cuando en un conejo se inyectaban anticuerpos antisalmonella de otro conejo del mismo alotipo, producían anticuerpos que reaccionaban con el anticuerpo inyecta­do, incluso aunque los dos conejos fueran genéticamente idénticos. Estos anticuerpos anti-idiotipo, en la mayoría de los casos, están dirigidos contra la estructura exclusiva de la porción fijadora de antígeno y por tanto solo reconocen a inmunoglobulinas de la misma especificidad, sin embargo en algunos casos, los anticuerpos anti-idiotipo pueden estar dirigidos contra zonas de la región hipervariable distintas de la porción fijadora del angeno y en este caso podrán unirse a inmunoglobulinas de varias especificidades distintas regulando la respuesta inmune frente a varios antígenos.

DISTRIBUCIÓN DE LAS INMUNOGLOBULINAS.

Las inmunoglobulinas se encuentran distribuidas en todos los fluidos orgánicos de la economía de los vertebrados y en las membranas de los linfocitos B y células plasmáticas. Las cantida­des relativas de cada una de las clases de inmunoglobulinas en los diferentes compartimentos del organismo son muy diferentes.

En el torrente sanguíneo predomina la IgG mientras que en las secreciones (saliva, lágrimas, secreción bron­quial, así como en el líquido cefalorraquídeo y mucosas) la IgA es la predominante. Los niveles de inmunoglobulinas séricas fluctúan ampliamente en función de diversos aspectos, tales como el estado nutricional, la edad, etc. Los valores normales en suero de un hombre adulto (entre 20 y 40 años) se recogen en la tabla 3.6.

Ontogénicamente se producen múltiples cambios en los niveles de inmunoglobulinas desde el nacimiento hasta los 8 ó 10 años, en que estos se estabilizan. En la figura 3.17 se expresan las concentraciones de inmunoglobulinas desde antes del nacimiento hasta los 5 años de edad. Los niveles de Ig G son muy altos en la vida fetal y en las primeras semanas de vida extrauterina, debido a que esta inmunoglobulina es la única que pasa de la madre al feto a través de la placenta. Durante la lactancia, descienden los niveles de IgG por catabolismo de esas moléculas que no son repuestas por carecer el niño aún de la capacidad de síntesis de las mismas. También en la edad fetal se sintetizan pequeñas cantidades de IgM (Figura 3.).

Cuando las inmunoglobulinas se encuentran insertas en la membrana de los linfocitos (inmunoglobulinas de membrana), actúan como receptores de las señales de activación antigénicas por su capacidad de reconoci­miento del antígeno constituyendo el receptor para el antígeno del linfocito B.

SUPERFAMILIA DE LAS INMUNOGLOBULINAS

La estructura de las cadenas pesadas y ligeras de las inmunoglobulinas posee ciertas similitudes entre sí (por ejemplo, la estructura en dominios equivalentes). Esto hizo pensar que ambas cadenas procedían de una molécula ancestral común. Idéntica similitud se ha observado con la b-2-microglobulina y con una gran cantidad de moléculas, todas ellas agrupadas, por tanto, bajo el mismo epígrafe de superfamilia de las inmunoglobulinas. Estas moléculas son: el receptor T para el antigeno, las moléculas de histocompatibilidad clase I y II, LFA-3, ICAM-1 y otras muchas que irán siendo estudiadas en diferentes capítulos de este libro, especialmente en el capítulo 8, donde se estudian las moléculas de adhesión (Figura 3.).

FUNCIÓN DE LAS INMUNOGLOBULINAS.

La función esencial de las inmunoglobulinas es la de unirse al antígeno. De esta manera las inmunoglobulinas actúan como receptoras de señales antigénicas o bien pueden colaborar en la destrucción antigénica. La primera función se presenta cuando las inmunoglobulinas se encuentran insertas en la membrana de los linfocitos B (inmunoglobulinas de membrana), y para la segunda requieren la colaboración del comple­mento, macrófagos, neutrófilos y células NK, que tienen la propiedad de unir las inmunoglobulinas por su extremo Fc.

Unión antígeno anticuerpo.

Los epítopos de un antígeno pueden estar formados por aminoácidos consecutivos en la secuencia de la proteína, como las proteínas se encuentran normalmente dobladas sobre si mismas según lo que llamamos estructura terciaria, en la mayoría de los casos los anticuerpos generados contra este tipo de epítopos solo reconocerán a la proteína desnaturalizada o “linearizada” y por ello se les llama epitopos lineales. En la mayoría de los casos los epítopos suelen estar formados por aminoácidos del antigeno que solo se encuentran suficientemente cerca unos de otros en la proteína nativa, es decir en la proteína que tiene estructura terciaria conservada, es decir una conformación adecuada, por lo que a estos epítopos se les llama epitopos conformacionales (Figura 3. ). Cuando inmunizamos un animal con una proteína, generaremos una serie de anticuerpos dirigidos contra los distintos epítopos de la misma, todos esos anticuerpos se encontraran circulando en el suero del animal al que, una vez extraido, llamaremos antisuero. El tipo de anticuerpos que compondrán ese antisuero dependerá en gran medida de la forma en que hayamos preparado la proteína para la inmunización, si la hemos preparado desnaturalizada, solo existirán epítopos lineales, mientras que si hemos inyectado la proteína en su estado nativo, coexistirán en el antisuero anticuerpos que reconozcan epítopos conformacionales con otros que reconozcan epítopos lineales. En el caso de anticuerpos monoclonales, todas los anticuerpos procederán de un clon de células plasmáticas y por tanto estarán dirigidos contra un solo epítopo que será de un tipo u otro. La importancia radica, en que dependiendo del tipo de epitopos que reconozcan los anticuerpos, las aplicaciones diagnosticas o de investigación serán distintas. En general, los anticuerpos que reconocen epitopos lineales serán útiles para técnicas de Western Blot (donde se analiza la proteína generalmente desnaturalizada) mientras los que reconocen epítopos conformacionales lo serán para técnicas de inmunofluoresencia, inmunoprecipitación, etc.

Paratopo.

Las inmunoglobulinas se unen a los epitopos de los antígenos por sus sitios activos, constituidos como se ha indicado anteriormente, por los segmentos variables de las cadenas pesadas y ligeras (Figura 3. ) y donde intervienen principalmente las regiones hipervariables. Esta zona de unión al epítopo se conoce con el nombre de paratopo.

Fuerzas de unión Ag-Ac

La unión del antígeno (Ag) con el anticuerpo (Ac) o inmunoglobulina es semejante a la que se establece entre la enzima y su substrato o entre proteínas que pertenecen a cualquier vía de señalización intracelular. Estas interacciones se deben a la formación de múltiples enlaces no covalentes (enlaces de hidrogeno, interacciones electrostáticas, de Van der Waals e hidrófobas), cada uno de los cuales por si solos son débiles. Sin embargo, como se establecen múltiples interacciones, la fuerza total de la unión puede ser muy elevada. Para que las interacciones mencionadas lleguen a ser efectivas, los grupos entre los que se establece deben estar situados a distancias muy cortas, y para que esto sea posible y se puedan producir un gran numero de interacciones, el epítopo y el paratopo deben encajar perfectamente, dependiendo de ello la “fuerza” de la interacción que conocemos con el nombre de afinidad. La afinidad esta interacción es de vital importancia, por cuanto de ello dependerá tanto la utilidad diagnósitca y de investigación de un anticuerpo como su importancia fisiopatológica. Para cuantificar la afinidad de una interacción, deberemos entender primero una serie de conceptos de los que nos ocuparemos a continuación. Al tratarse de uniones no covalentes, la unión Ag/Ac será reversible de modo que cuando el antígeno y el anticuerpo se mezclan en solución, se estarán formando y disociaciando complejos constantemente de acuerdo con la siguiente ecuación:

KA

Ag + Ac = == Ag-Ac

KD

donde ka representa la constante de velocidad y kd la de disociación.

Llegara un momento en que la velocidades de asociación y disociación se igualen, es decir, que el numero de complejos Ag/Ac que se formen sea el mismo que el que se disocie, entonces decimos que se ha llegado a una situación de equilibrio dinámico. Una forma indirecta de medir la afinidad de la interacción de una pareja Ag/Ac, será medir la velocidad de asociación y disociación antes de que se llegue al equilibrio, lo cual puede realizarse actualmente mediante biosensores. Cuanto mayor sea la velocidad de asociación y menor la de disociación mayor será la afinidad de la interacción de esa pareja Ag/Ac. Otra forma complementaria y más directa de cuantificar la afinidad de la interacción Ag/Ac, es hacerlo una vez que se ha alcanzado el equilibrio y utilizando concentraciones bajas de anticuerpo. En estas condiciones la concentración de antígeno que permite que la mitad de los anticuerpos estén unidos a ellos y la otra mitad libre, medida en molaridad, se denomina constante de disociación (KD) y es una medida directa de la afinidad de la interacción. Cuanto menor sea la KD mayor será la afinidad puesto que indica que es necesaria una menor concentración de antígeno para que la mitad de los anticuerpos estén ocupados. La inversa de la KD es la constante de asociación (KA) cuyo valor es directamente proporcional a la afinidad de la interacción. Para determinar experimentalmente estas constantes tendremos que conocer las concentraciones de antígeno libre y unido, para lo cual existen varios métodos entre los que destacan análisis mediante dialisis de equilibrio (Figura 3.). Esta técnica se basa en la utilización de una membrana semipermeable de un poro tal, que permita el paso de un antígeno suficientemente pequeño (un hapteno) pero no del anticuerpo. A concentraciones bajas de antígeno, la concentración de anticuerpo libre ira bajando rápidamente hasta que se alcance el equilibrio, puesto que todo el antígeno que entre a través de la membrana semipermeable quedara retenido por el anticuerpo. Realizando el experimento anterior con varias concentraciones de antígeno, podremos encontrar aquella en la que la mitad del anticuerpo se encuentra unido al antígeno que como hemos dicho corresponde a la KD. La afinidad que hayamos calculado corresponderá exclusivamente a la de la interacción de esa pareja Ag/Ac. Un determinado anticuerpo podrá unirse a mas de un antígeno con afinidades distintas en cada caso.

Avidez de la unión Ab-Ac

Como apuntábamos anteriormente, el fenómeno de la unión Ag/Ac es en realidad mucho más complejo, pues cada uno de los antígenos poseen varios epítopos distintos, por lo que podrán unir mas de un anticuerpo. Cada molécula de anticuerpo, por su parte, podrá unir al menos dos moléculas de antigeno, una por cada Fab y en el caso de la IgM hasta diez moléculas (como se comento anteriormente las inmunoglobulinas IgM se ensamblan en unidades funcionales constituidas por cinco moléculas de anticuerpo). Finalmente en un antígeno, un determinado epítopo puede estar representado varias veces siendo capaz de unir varias moléculas del mismo anticuerpo. La fuerza total de la interacción que considera todas las interacciones epítopo/paratopo que tienen lugar entre antígenos y anticuerpos multivalentes (con varios sitios de unión), se denomina avidez y es mucho mayor que la suma de las afinidades puesto que las distintas interacciones se estabilizan entre ellas. Estas interacciones multivalentes poseen una gran importancia fisiopatológica por cuanto cuando se encuentren Ag y Ac en solución, como es el caso del plasma o los tejidos, se formaran agregados constituidos por muchas moléculas que denominamos Inmunocomplejos. A concentraciones equivalentes de Ag y Ac estos inmunocomplejos serán de gran tamaño y podrán quedar atrapados en los tejidos, iniciando una respuesta inflamatoria y dando lugar a las llamadas enfermedades por deposito de inmunocomplejos.

Especificidad de la unión Ag-Ac

La unión entre el Ag y la Ig tiene una gran específicidad, de tal manera que una Ig se unirá fundamentalmente y con mayor avidez, a un antígeno determinado. En algunos casos la inmunoglobulina podrá unirse a antígenos con epítopos muy similares, aunque en este caso la afinidad de la unión es mucho menor (Tabla 3.7). También es posible que un mismo epítopo se encuentre con dos antígenos diferentes en cuyo caso el anticuerpo reaccionara con los dos antígenos, diciéndose entonces que existe una reactividad cruzada.

La consecuencia final de la acción de las inmunoglobulinas es la de destruir al antígeno y/o neutralizar los efectos nocivos de los mismos. Para la consecución de estos objetivos todas las inmunoglobulinas poseen, como ya se ha indicado, una característica esencial y común, que es la de unirse específicamente al antígeno, caracteristica que depende como hemos dicho, de sus regiones hipervariables contenidas en el fragmento Fab. Sin embargo, tanto la neutralización como la destrucción del antígeno, lo consiguen de muy diversas formas, dependiendo del tipo y manera de encontrarse el antígeno y también del tipo de inmunoglobulina que interviene en cada caso utilizando para ello, las regiones constantes y concretamente sus extremos Fc.

Tras la unión del antígeno y la inmunoglobulina, ésta puede anular la acción del antígeno por neutralización, precipitación o aglutinación del mismo. Así si la Ig es específica para una toxina bacteriana, cuando se produce la unión Ag-Ac (toxina-antitoxina), quedan neutralizados los efectos tóxicos de la toxina. De ahí que clásicamente, cuando no se conocía la estructura de las inmunoglobulinas, se las denominase antitoxinas, precipitinas o aglutininas, en función de la reacción que se detectaba en cada caso.

Propiedades biológicas de las inmunoglobulinas.

Los fenómenos de neutralización, precipitación y aglutinación de los antígenos no son suficientes por sí solos para la destrucción y total eliminación de éstos. Para ello, además de las inmunoglobulinas se requiere de la colaboración de otros muchos elementos, tales como el sistema del complemento, macrófagos, polimorfonucleares o células NK.

Podemos decir que las inmunoglobulinas, al detectar los antígenos y producirse la subsiguiente unión a ellos, actúan como trans-ductores de la información de la presencia de los mismos que serían destruidos por el complemento, macrófagos, los polimorfonucleares o células NK a los que dan especificidad.

Opsonización.

Cuando se produce la unión de antígeno e inmunoglobulina G se producen una serie de cambios alostéricos en el extremo Fc de la IgG que hacen que se una a receptores que se encuentran en la membrana de macrófagos y polimorfonucleares. A este fenómeno se le denomina opsonización (Figura 3.). Al producirse esta unión, los macrófagos se activan, iniciándose el fenómeno de fagocitosis y subsiguiente destrucción de los complejos antígeno anticuerpo por los procesos líticos intracelulares, propios de la acción de los enzimas contenidos en los lisosomas de estas células. Estos receptores pueden ser de distinta naturaleza, conociendose en la actualidad tres de estos receptores: FcgRI, FcgRII y FcgRIII, conocidos en la actualidad como CD64, CD32 y CD16 respectivamente. Además de en los macrófagos estos receptores se encuentran en otras células como plaquetas, linfocitos B y NK (Tabla 3.8). Cuando se produce la unión a células NK estas se activan y lisan a las células portadoras del antígeno por un mecanismo conocido como citotoxicidad celular dependiente de anticuerpos (ADCC).

Cuando la inmunoglobulina que se une a un antígeno es de las clases IgM o IgG, en sus extremos Fc se producen ciertos cambios alostéricos gracias a los cuales éstas adquieren la propiedad de fijar y activar uno de los componentes del complemento. Las fracciones activas del complemento poseen diferentes acciones muy importantes en la defensa del organismo, una de las cuales es la lisis celular. Este fenómeno se conoce con el nombre de citotoxicidad mediada por el complemento.

Además de estas funciones, las inmunoglobulinas tienen la capacidad de ser esenciales en el fenómeno de reconocimiento del antígenos por parte de linfocitos B cuando se encuentran ligadas a la membrana celular de estas células como inmunoglobulinas de membrana constituyendo el receptor para el antígeno del linfocito B. Esta propiedad será estudiada extensamente en capítulos posteriores.

En la actualidad y utilizando técnicas de Ingeniería Genética, podemos “construir” anticuerpos monoclonales que contengan una especificidad determinada y que sean del isotipo que deseemos para que predominen unas u otras funciones biológicas. Incluso podemos, con fines terapéuticos generar anticuerpos monoclonales de una determinada especificidad en ratones y posteriormente aislar el ADN que codifica para las regiones hipervariables que confieren la especificidad y fusionarlo con el ADN que codifica para las regiones constantes humanas, estos anticuerpos monoclonales “humanizados” tendrán indudables ventajas desde el punto de vista terapéutico al no ser considerados como extraños por el sistema inmune humano (ver capítulo 4).

Propiedades y función de cada una de las inmunoglobulinas

Aunque en los apartados anteriores se ha hecho mención a las propiedades y función de las inmunoglobulinas, a continuación estudiaremos brevemente y por separado las características funcionales más importantes de cada una de ellas (Figura 3.).

Inmunoglobulina G.

Son las inmunoglobulinas más abundantes y representan más del 70 % de las Igs séricas totales; las diferentes subclases se presentan en proporciones muy diferentes. La IgG1 es la subclase más frecuente (más del 60 %), seguida de la IgG2 (aproximadamente un 18 %), mientras que IgG3 e IgG4 se encuentran en mucha menor proporción.

Esta Ig posee capacidad neutralizante, precipitante, de fijar complemento, de unirse a células NK y a macrófagos (opsonización) y son capaces de atravesar activamente las membranas biológicas. La propiedad de atravesar activamente las membranas biológicas es de sumo interés por lo que, además de ejercer esta inmunoglobulina, su efecto en toda la “economía del organismo”, lo hace también en el feto al atravesar la placenta desde la madre, merced a la existencia de receptores para la porción Fc en el sincitiotrofoblasto.

Como el feto sólo sintetiza pequeñas cantidades de inmunoglobulinas, adquiere de este modo la posibilidad de defensa, no solamente mientras se encuentra en el seno materno, sino incluso durante la lactancia, período en el cual todavía no ha desarrollado la capacidad total de síntesis de inmunoglobulinas.

Sin embargo, este paso de IgG desde la madre al feto no siempre es beneficioso para el feto. De todos es sabido que cuando hay incompatibilidad del tipo Rh entre la madre y el feto, se puede desarrollar el síndrome de eritroblastosis fetal como consecuencia de la destrucción de glóbulos rojos fetales, de nefastas consecuencias si no se acude a tiempo. Esto no se presentaría si la IgG no pasase de la madre al feto

La IgG se sintetiza tardíamente tras un primer contacto con el antígeno, sin embargo, tras un segundo contacto la mayoría de las Igs formadas pertenecen a esta clase (Respuesta Secundaria) ( Tabla 3.9).

Inmunoglobulina M.

Los anticuerpos del tipo IgM son los que mas rápidamente se forman en respuesta a un estímulo antigénico (Respuesta primaria). Esta Ig se caracteriza también por poseer capacidad neutralizante, precipitante, aglutinante, fijar complemento, activar la respuesta inmune, sin embargo no atraviesa activamente las membranas biológicas. Esta última propiedad hace que esta inmuno­globulina ejerza su acción normalmente en los espacios intravasculares.

Representa del 5 al 10 % de las Igs séricas totales y junto a la IgD es la más frecuentemente encontrada en la superficie de los linfocitos B como inmunoglobulina de membrana.

Inmunoglobulina A.

Esta inmunoglobulina posee capacidad neutralizante y precipitante, mientras que su capacidad de fijar complemento y de opsonización son muy débiles, limitándose su efecto a neutrófilos y no a macrófagos.

La propiedad más importante de esta inmunoglobulina viene determinada por su capacidad de unirse por el extremo Fc a la pieza secretora, gracias a la cual puede ser secretada por las mucosas y glándulas exocrinas, ejerciendo su acción más importante en la superficie de mucosas y líquidos biológicos (sobre todo IgA2), tales como el liquido cefaloraquideo, secreción bronquial, lágrima, saliva, etc. Esto es importante porque así protegen precisamente los puntos más vulnerables del organismo, esto es, las puertas de entrada al mismo, como son ojos, boca, aparato digestivo, sistema respiratorio, vagina, etc. No olvidemos que, por ejemplo, si desplegamos la mucosa del aparato respiratorio, la superficie que cubriríamos es de unos 300 m2, superficie que se encuentra en contacto directo con el exterior a través del aire que se respira. Se deduce de ello que, sin duda, deben ser importantes los mecanismos de defensa local entre los cuales la IgA tiene un papel esencial.

Esta inmunoglobulina se encuentra también en la leche materna. Los niveles de todas las inmunoglobulinas, a excepción de la IgG en recién nacidos son muy bajos, siendo por tanto de gran significación el hecho de que la IgA se transfiera desde la madre al lactante a través de la secreción láctea. De ahí que tengamos que insistir en que los lactantes se amamanten en el mayor grado posible directamente por las madres y no con leche de otros orígenes, a lo que actualmente existe excesiva tendencia.

La IgA recibida de la madre ejerce un importante papel de defensa a nivel de todo el aparato digestivo. En ello parece que influyen las especiales características de pH gástrico del lactante que es menos ácido que en el adulto y una especial resistencia de esta inmunoglobulina frente al mismo, por lo que no se destruye a su paso por el estómago.

Inmunoglobulina D. .

La concentración de esta inmunoglobulina en suero es muy baja. Hasta fechas muy recientes no se había demostrado que esta inmunoglobulina poseía capacidad de unirse a antígenos, por lo que se dudaba de que actuase con función de anticuerpo. Sin embargo, aunque actualmente se ha demostrado su acción de anticuerpo, no se conoce con precisión cuáles son sus funciones específicas, aunque se piensa que colabora de forma importante en la activación de linfocitos B al actuar como receptor en la superficie de los mismos.

Inmunoglobulina E.

En muchos individuos alérgicos esta inmunoglobulina se presenta en grandes cantidades. El estímulo para su síntesis puede proceder de una gran variedad de antígenos, a los que en este caso se conocen como alergenos. Estos alergenos pueden penetrar en el organismo a través de la piel o de las mucosas respiratoria, ocular, del aparato digestivo, etc., así como por inyectables, como es el caso de la penicilina u otros medicamentos.

La vida media de la IgE en sangre periférica es de 24-48 horas. No tiene capacidad de atravesar la placenta, por lo tanto, las reacciones de hipersensibilidad inmediata no pueden transferirse de manera pasiva de la madre al feto. Sin embargo, puede existir una predisposición de tipo familiar a padecer enfermedades de naturaleza alérgica. Esta predisposición parece estar relacionada con una tendencia a producir anticuerpos de tipo IgE en la respuesta secundaria frente a antígenos, en lugar de IgG que seria la respuesta normal en individuos no alérgicos.

La IgE se encuentra en forma libre en sangre en donde se observa que los niveles cambian a lo largo de la edad. También la IgE se encuentra en otros líquidos biológicos así como unida a basófilos y células cebadas, gracias a la propiedad que tiene esta inmunoglobulina de unirse por su extremo Fc a receptores de superficie presentes en dichas células. Estas células se caracterizan por encontrarse en la piel y mucosas y por contener abundantes gránulos citoplasmáticos, ricos en sustancias vasoactivas que liberan una vez se activan.